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Abstract
Interpretable communication is essential for safe and trustworthy
autonomous driving, yet current vision-language models (VLMs)
often operate under idealized assumptions and struggle to cap-
ture user intent in real-world scenarios. Existing driving-oriented
VQA datasets are limited to full-scene descriptions or waypoint
prediction, preventing the assessment of whether VLMs can re-
spond to localized user-driven queries. We introduce Box-QAymo,
a box-referring dataset and benchmark designed to both evalu-
ate and finetune VLMs on spatial and temporal reasoning over
user-specified objects. Users express intent by drawing bounding
boxes, offering a fast and intuitive interface for focused queries
in complex scenes. Specifically, we propose a hierarchical eval-
uation protocol that begins with binary sanity-check questions
to assess basic model capacities, and progresses to (1) attribute
prediction for box-referred objects, (2) motion understanding of
target instances, and (3) spatiotemporal motion reasoning over
inter-object dynamics across frames. To support this, we crowd-
sourced fine-grained object classes and visual attributes that reflect
the complexity drivers encounter, and extract object trajectories
to construct temporally grounded QA pairs. Rigorous quality con-
trol through negative sampling, temporal consistency checks, and
difficulty-aware balancing guarantee dataset robustness and diver-
sity. Our comprehensive evaluation reveals significant limitations
in current VLMs when queried about perception questions, high-
lighting the gap in achieving real-world performance. This work
provides a foundation for developing more robust and interpretable
autonomous driving systems that can communicate effectively with
users under real-world conditions. Project page and dataset are
available at https://djamahl99.github.io/qaymo-pages/.

CCS Concepts

• Computing methodologies → Scene understanding; Object
recognition.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

Keywords
Autonomous Driving, Vision-Language Models, Visual Question
Answering.

ACM Reference Format:
Djamahl Etchegaray, Yuxia Fu, Zi Huang, and Yadan Luo. 2018. Box-QAymo:
Box-Referring VQA Dataset for Autonomous Driving. In Proceedings of
Make sure to enter the correct conference title from your rights confirmation
email (Conference acronym ’XX). ACM, New York, NY, USA, 7 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Safety-critical autonomous driving systems depend on effective
human-AI communication to foster trust and support widespread
adoption. However, recent high-profile incidents involving autonomous
vehicles [3] have exposed critical gaps in user interaction. Studies
show that 60% of consumers remain hesitant to adopt fully au-
tonomous vehicles [1, 2], with primary concerns reflecting issues
with system transparency. These findings underscore the need for
frameworks to assess how effectively systems can communicate
their understanding and intentions to human users.

Despite this need, progress in evaluating human-AI communica-
tion has been limited by the concentration of domain-specific data.
Researchers lack access to semantically rich data required to de-
velop and benchmark communication frameworks. Major datasets
like Waymo Open [25], nuScenes [5] and KITTI [10] represent mil-
lions of dollars in labeling, however, these efforts are constrained by
limited class vocabularies. The result is that academic progress in
evaluating human-AI communication for autonomous driving lags
behind perception capabilities, despite being necessary to enable
adoption.

Existing vision-language models adapted for autonomous driv-
ing focus predominantly on motion planning while neglecting the
equally critical challenge of communicating perceptual understand-
ing to users. Recent works like Drive-LM [26] and Talk2Drive [8]
demonstrate impressive open-source datasets that integrate LLMs
into the planning stage with user intentions. Commercially, Wayve
has released LINGO [18] and Waymo has released EMMA models
that can handle many tasks, including 3D object detection, plan-
ning, and reasoning. All of these models require substantial data
for training and evaluation to effectively encompass many different
scenarios. This creates a significant disconnect between research
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Figure 1: Overview of the Box-QAymo dataset pipeline for evaluating vision-language models (VLMs). Step 1 extracts 3D metadata
from Waymo which is enhanced with human-annotated semantics. Step 2 introduces box-referenced visual question answering (VQA)
tasks spanning instance recognition, motion interpretation, and temporal trajectory reasoning. Step 3 implements rigorous quality control
through negative sampling, temporal consistency filtering, and difficulty-aware balancing to ensure a robust and challenging dataset. Step 4
benchmarks general and domain-specific VLMs in zero-shot and fine-tuned settings.

evaluation and real-world deployment scenarios. In practice, au-
tonomous systems must operate with uncertain, incomplete per-
ceptions while simultaneously communicating their confidence
and reasoning to users. Current evaluation frameworks fail to cap-
ture this dual challenge, leading to models that can plan effectively
but cannot explain their limitations or reasoning processes. This
limitation becomes particularly problematic when these models
encounter edge cases or unusual scenarios in which clear commu-
nication of uncertainty becomes critical to maintaining user trust
and safety.

The limited semantic diversity in existing autonomous driving
datasets constrains the development of models capable of com-
municating about complex driving scenarios. The vocabularies of
popular datasets are restricted to basic objects, such as, vehicles,
pedestrians, and cyclists. These vocabulary constraints force mod-
els to communicate about complex, nuanced scenarios using overly
simplified categorical descriptions. A “vehicle” classification cannot
convey the difference between a parked truck, a merging sedan,
or an emergency vehicle, distinctions that are crucial for appropri-
ate user communication and trust. This limited object vocabulary
directly undermines the development of communication systems
that can provide users with the detailed, contextual understanding
necessary for informed decision-making in collaborative driving
scenarios.

Existing benchmarks either assume unrealistic access to perfect
scene understanding or limit evaluation to oversimplified object
categories that fail to capture the semantic richness required for ef-
fective human communication. To our knowledge, existing datasets
do not provide hierarchical evaluation that can assess model un-
derstanding across the spectrum from basic perception to complex
temporal reasoning about dynamic scenes. This evaluation gap
means that researchers cannot adequately measure the progress
toward communication systems that would actually be deployable

in real-world scenarios. Without benchmarks that reflect true per-
ceptual constraints and semantic complexity, the field lacks the
tools necessary to develop reliable, communicative autonomous
systems. Addressing this evaluation gap requires datasets that com-
bine realistic perceptual constraints with rich semantic annotations
and structured assessment frameworks.

In this paper, we introduce a novel dataset and evaluation frame-
work (Box-QAymo) that addresses these limitations through crowd-
sourced semantic diversity, temporal reasoning assessment, and
hierarchical evaluation structures. Our approach expands seman-
tic diversity through crowd-sourced fine-grained class labeling,
moving beyond the 3-10 class limitations of existing datasets. We
incorporate temporal reasoning evaluation to assess whether mul-
timodal language models can understand object trajectories from
visual information alone. Our hierarchical question format provides
structured evaluation from binary classification through attribute
prediction to complex motion understanding. Our dataset com-
prises 1,662 binary, 5,403 attribute, and 13,714 motion Q&A pairs,
respectively. By combining semantic richness with temporal un-
derstanding and structured evaluation, we can identify specific
limitations in current models while providing a pathway for sys-
tematic improvement. Our evaluation of general-purpose VLMs and
Senna demonstrates the effectiveness of this approach, revealing
systematic performance degradation from binary to more complex
reasoning tasks, with substantial improvements achievable through
targeted finetuning. Our framework establishes a foundation for
developing autonomous driving systems that can communicate
effectively with users, ultimately supporting the trust and adoption
necessary for widespread deployment of autonomous vehicles.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Box-QAymo: Box-Referring VQA Dataset for Autonomous Driving Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 Related Work

Recent efforts in building Visual QuestionAnswering (VQA) datasets
for autonomous driving have primarily focused on three core com-
ponents: perception, prediction, and planning. Perception-focused
questions commonly cover environmental elements and conditions
like traffic signals [7, 12, 20, 24, 26, 27]. The questions range from
closed-form answers [26] to free-form scene descriptions [12, 27].
Prediction-related questions often emphasise the behavioural inten-
tions of surrounding objects to ensure safe path planning for the
ego vehicle [12, 17, 19, 20, 24]. Moreover, some datasets incorporate
object recognition tasks, involving both static (e.g., type, colour)
[19, 20, 24, 30] and dynamic (e.g., speed) [12, 17, 24] attributes,
as well as counting and identifying vulnerable or critical objects
[12, 17, 24, 26]. Some datasets require reasoning about spatial re-
lationships between objects [20, 21, 24, 30, 32] and ranking their
importance [17, 22]. Planning-related questions can be grouped into
meta-actions, justifications, waypoints, attention cues, and user in-
structions. Meta-actions [7, 12, 19, 24, 26, 27, 32] and waypoints [26]
correspond to future ego-vehicle trajectories, while justification
[14, 28, 31, 32] and attention cues [13, 19, 24] are designed to en-
hance the model’s reasoning and chain-of-thought [26] capabilities.
To facilitate human-AI collaboration and promote safe decision-
making, some datasets [9, 13, 16] introduce user instructions, while
others [19, 27] offer counterfactual reasoning annotations to expose
unsafe behaviours.

Although several datasets address either object-centric questions
or user-instructed interactions, none have unified both in a way
that supports explicit referential grounding. To fill this gap, we pro-
pose Box-QAymo, a dataset where users highlight specific objects
via bounding boxes and pose instance-grounded, spatiotemporal
questions. This design enables a more intuitive form of human-AI
interaction and allows for direct evaluation of a model’s referential
understanding through box-referenced queries.

3 Dataset Overview
Our dataset construction methodology follows a three-stage ap-
proach as seen in Figure 1: (1) enhanced object annotation using
crowd-sourced labeling, (2) box-referring VQA dataset generation
based on object characteristics and temporal dynamics, and (3) sam-
pling and balancing strategies for VQA distribution and difficulty
control.
3.1 Enhanced Object Annotation
Base Dataset Selection. We build upon the Waymo Open Dataset
(WOD) [25], which provides high-quality 3D annotations for au-
tonomous driving scenarios.We split theWOD validation set evenly
into finetuning/validation splits with 101 scenes each. While previ-
ous works have opted for nuScenes [6] for its existing class diversity,
we focus on WOD for its superior scene diversity and LiDAR den-
sity. While WOD offers robust geometric annotations, its semantic
labeling is limited to coarse categories (i.e., pedestrians, cyclists,
vehicles, and signs). To enable fine-grained visual question answer-
ing, we augment these annotations with detailed semantic labels
through crowdsourcing.
Crowdsourced Semantic Labeling. Labeling is necessary to en-
rich objects with enough semantic description for a VLM to single

them out. To accomplish this, we employ a crowdsourced anno-
tation strategy to obtain fine-grained semantic labels for approxi-
mately 50% of objects in our dataset, skipping objects with poor visi-
bility. The taxonomy established in Argoverse 2.0 [29] was followed,
providing significantly richer semantic categories. For vehicle in-
stances, annotators also provide color labels to enable color-based
reasoning questions.
The annotation pipeline is as follows:

(1) Objects are exported as crops with 3D bounding boxes overlaid
for each camera and timestamp they are visible.

(2) We collect up to 9 best crops based on the visibility of the object
in each crop.

(3) We fuse these crops as a 3x3 gallery, giving the annotators multi-
ple views to help them with occluded and distant objects.

(4) The object galleries are collected and uploaded to CVAT.
(5) Annotators label instances iteratively and ignore those that are

not visible.
3.2 Box-Referring VQA Dataset Construction
Table 1: Overview of question subcategories and examples
in the Box-QAymo dataset. The taxonomy follows a hierarchical
structure, starting from basic binary VLM sanity checks and extend-
ing to fine-grained object classification and complex spatiotemporal
reasoning tasks. This design enables systematic evaluation of VLM
capabilities across varying levels of visual understanding.
Subcategory Example Questions

Movement Status "Are there any stationary vehicles?"

Orientation "Are there any vehicles moving towards the camera?"

Fine-grained Classification "What type of object is in the red box?"

Color Recognition "What color is the object highlighted in red?"

Facing Direction "What direction is the object in the red box facing?"

Speed Assessment "How fast is the blue sedan moving?"

Movement Direction "What direction is the object in the red box moving?"

Relative Motion Analysis "Is the green pickup truck traveling faster than the ego vehicle?"

Traffic Element Recognition "Is the ego vehicle approaching a stop sign?"

Trajectory Analysis "Are the ego vehicle and the truck on a collision course?"

Relative Motion Direction "What is the relative motion direction of the hatchback compared to ego?"

Path Conflict Detection "Is there a vehicle in the ego vehicle’s future path?"

Our question generation follows a principled hierarchical struc-
ture, progressing from simple binary queries to complex spatio-
temporal reasoning tasks. This design enables systematic evaluation
of model capabilities spanning different levels of visual understand-
ing.

3.2.1 VLM Sanity CheckWe generate binary (yes/no) questions
about object presence and basic characteristics, without referring to
bounding boxes. These questions are designed to test the common
sense and fundamental scene understanding capabilities of VLMs.
We use these simple questions as a sanity check to filter out models
that lack basic visual-language alignment. Our binary questions
includeMovement Status and Orientation (see Table 1).

3.2.2 Instance-Grounded Questions To enable VLMs to answer
questions about specific objects, some datasets [24, 27] incorporate
object coordinates into the questions. However, VLMs struggle with
interpreting precise numerical coordinates, while excelling at visual
markers [26]. Building on evidence that even simple visual prompts,

3
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such as red circles, can effectively guide VLM attention[23], we
design instance-grounded questions that use red bounding boxes to
highlight target objects. This approach tests whether VLMs can (1)
correctly identify the referenced object among multiple instances,
(2) classify the fine-grained object types (e.g., sedan vs SUV), and
(3) recognize detailed attributes (color, orientation, state). In au-
tonomous driving, this capability is crucial: passengers may need
to reference specific vehicles or pedestrians when querying the sys-
tem’s perception. Our instance-grounded questions include Fine-
grained Classification and Color Recognition (see Table 1).

Rather than requiringmodels to infer user intent from ambiguous
text alone, bounding-box inputs provide explicit spatial references
similar to how humans naturally point to objects when asking ques-
tions. This design tests whether models can reason about referred
objects or rely on scene-level statistics or textual correlations.

3.2.3 Motion Reasoning Questions. Beyond box-referring compre-
hension, we investigate whether VLMs can understand motion re-
lationships of referred objects. To address this, we introduce more
challenging motion reasoning questions that require understanding
object movement over time and spatial relationships between the
ego vehicle and surrounding objects. We categorize these as motion
understanding questions, divided into implicit and explicit based
on their input format.

Motion reasoning questions test VLMs’ spatiotemporal under-
standing through two approaches: implicit questions use single
frames to infer motion from visual cues (e.g. motion blur, wheel
orientation), while explicit questions provide frame sequences for
direct temporal analysis. This design reveals whether models truly
process temporal information or rely on static scene understanding.
Our motion reasoning questions questions include Speed Assess-
ment,RelativeMotion Analysis, Traffic Element Recognition,
Trajectory Analysis and Path Conflict Detection (see Table 1).

These questions have answers varying from binary to multi-
ple choice. The multiple choice questions prompt the model to
understand speed, heading and movement direction.
3.3 Question Balancing and Sampling
To ensure data set balance and prevent trivial solutions, we imple-
ment several sampling strategies.
Negative sampling: We find samples that do not fit the criteria
for the ground truth answer and create additional samples from
these criteria - i.e. negatives with varying object types, locations or
temporal contexts. In fact, we find for many trajectory questions
negative samples are much easier to come by then positive ones,
as criteria for determining if a trajectory matches a question are
usually quite strict, so finding positives is actually much harder.
Temporal consistency.We ensure that trajectory-based questions
maintain logical consistency across frame sequences through: (1)
linearly interpolating object positions to handle missing object
information in Waymo, (2) requiring movement patterns to satisfy
criteria over multiple consecutive frames to become positive, (3)
smooth velocity calculations using temporal derivatives, and (4)
selecting timestamps for questions based on temporal convergence
patterns rather than instantaneous criteria.
Difficulty stratification. Questions are categorized by complex-
ity, from basic object detection to complex multi-object trajectory
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Percentage of Questions
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Attribute: Fine-Grained Classification

Attribute: Facing Direction
Motion: Relative Motion Direction

Motion: Path Conflict Detection
Motion: Trajectory Analysis

Motion: Movement Direction
Motion: Speed Assessment

Motion: Traffic Element Recognition
Motion: Relative Motion Analysis

Qu
es

tio
n 

Ca
te

go
rie

s

 3.8%
 4.2%
 4.2%

 8.9%
12.5%

 2.1%
 3.1%

 4.4%
12.5%
12.5%

13.5%
18.3%

Binary
Attribute
Motion

Figure 2: Question distribution across semantic categories
in the Box-QAymo dataset. The taxonomy spans binary status
checks, object attribute recognition, and motion-centric reasoning.
Notably, motion-related questions form the majority, emphasizing
the dataset’s focus on dynamic scene understanding in autonomous
driving scenarios.

reasoning. The hierarchical structure allows for granular analy-
sis of model capabilities, from basic object recognition to complex
spatio-temporal reasoning in autonomous driving scenarios.
Answer format. Each multiple-choice question (MCQ) includes
multiple-choice answers with 2-4 options, preventing binary guess-
ing while maintaining evaluation precision.

4 Experiments

4.1 Experimental Setup
Models Evaluated. We evaluate three VLMs with varying special-
ization: LLaVA-1.5 7B [15], a general-purpose multimodal model
trained on diverse internet-scale image-text pairs; Qwen-7B [4], a
recently released large-scale vision-language model demonstrating
strong zero-shot performance; and Senna [12], a domain-specific
model tailored for autonomous driving scenarios, designed to inte-
grate structured driving cues into multimodal reasoning.
EvaluationProtocol.Weevaluated themodels in our three-question
hierarchies using F1 as the primary metric, supplemented by per-
class precision and recall analysis. We report both overall perfor-
mance and category-specific breakdowns to identifymodel strengths
and limitations.
Steering Prompts. When running inference, we parse a format
prompt to help steer the model to output the desired output format.
This could be something like "Respond with only the full
name of your selection (e.g., brown). Choose the best
option out of ‘red’, ‘yellow’, ‘green’ or ‘brown’.". This
supplies the model with the choices for multiple choice questions,
allowing it to give a valid response.
Response Parsing.We employ a multistage parser to extract valid
answers from free-form model outputs despite the use of steering
prompts. This includes: (1) text normalization, (2) exact choice
matching, and (3) ranked list handling. Outputs that do not contain
a match are marked as invalid.
Finetuning.We finetuned models with LoRA [11] for one epoch
on our finetuning split using LoRA with rank 128 and alpha 256.
We used a learning rate of 2e-4 with cosine scheduling, batch size
8, and bf16 precision. Finetuned models are denoted in tables and
figures with †for single-frame and ‡for two-frame models. The

4
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training data was converted to LLaVA chat format and we adapted
LLaVA’s LoRA finetuning script to suit.
Two-frame Motion.We investigate whether models can interpret
object motion better if we provide the previous camera frame along-
side the current, giving the model a chance to spot the differences
and interpret the motion of the referred object. The prompt includes
both frames to offer temporal context for the referred object.

4.2 Overall Performance
Figure 3 presents the overall performance of all models on the
validation set. Finetuned models (†) outperform their zero-shot
counterparts in most cases, with the most significant gains observed
in motion-related reasoning, highlighting the importance of task-
specific adaptation. Notably, Senna’s performance is very low for
many tasks and zero for attribute tasks. Qwen-VL is the best of the
class, flanked only fine-tuned LLaVA.

Binary Attribute Motion
0

20

40

60

LLaVA LLaVA† Qwen-VL Senna Senna†

F1
 S

co
re

 (%
)

Figure 3: Overall F1 performance across question types for
general-purpose and domain-specific VLMs.

Table 2: Performance on binary characteristic questions by
subcategory. †indicates single-frame finetuning. Bold indicates
best performance, underline indicates second-best.
Question Type Model Precision (%) Recall (%) F1 (%)

Movement Status

LLaVA 76.43 62.55 68.77
LLaVA† 71.99 70.37 69.81
Qwen-VL 76.59 76.13 76.03
Senna 65.23 61.11 62.20
Senna† 70.43 56.17 46.91

Orientation

LLaVA 72.03 59.85 65.37
LLaVA† 77.86 76.02 75.62
Qwen-VL 73.49 73.05 72.92
Senna 65.65 61.90 59.94
Senna† 68.66 55.02 44.96

4.3 Discussion
Model Response Quality. Our evaluation reveals stark differ-
ences in models’ ability to generate parsable responses, with Senna
achieving only 34% valid responses compared to LLaVA (90%) and
Qwen-VL (99%). This parsing failure rate represents a fundamental
limitation - models that cannot reliably follow structured output
formats are unsuitable for safety-critical autonomous driving appli-
cations where consistent, interpretable outputs are essential.
Hierarchy Complexity Validation.Model evaluation across bi-
nary, attribute andmotion questions can be found in Table 2, Table 3

Table 3: Performance on attribute questions by subcategory.
†indicates single-frame finetuning. Bold indicates best perfor-
mance, underline indicates second-best.
Question Type Model Precision (%) Recall (%) F1 (%)

Color Recognition

LLaVA 22.37 17.14 15.10
LLaVA† 46.52 37.60 38.46
Qwen-VL 42.69 50.49 42.49
Senna 0.00 0.00 0.00
Senna† 39.16 29.30 28.54

Facing Direction

LLaVA 22.98 25.05 14.49
LLaVA† 9.40 24.95 13.66
Qwen-VL 30.04 29.64 21.34
Senna 0.00 0.00 0.00
Senna† 22.26 27.08 20.72

Fine-grained Classification

LLaVA 11.41 5.51 6.36
LLaVA† 26.87 29.88 26.73
Qwen-VL 19.60 24.93 18.81
Senna 0.00 0.00 0.00
Senna† 27.92 21.02 22.50

Table 4: Performance on motion questions by subcategory.
†indicates single-frame finetuning. Bold indicates best perfor-
mance, underline indicates second-best.
Question Type Model Precision (%) Recall (%) F1 (%)

Movement Direction

LLaVA 24.62 25.38 19.13
LLaVA† 20.03 25.50 20.23
Qwen-VL 26.29 26.80 19.68
Senna 0.00 0.00 0.00
Senna† 25.46 24.57 22.22

Path Conflict Detection

LLaVA 47.53 43.21 44.88
LLaVA† 50.06 50.02 30.28
Qwen-VL 57.93 56.63 56.84
Senna 63.37 46.56 50.08
Senna† 53.08 51.57 33.89

Relative Motion Analysis

LLaVA 52.17 54.71 48.93
LLaVA† 64.57 51.80 50.94
Qwen-VL 44.33 49.41 46.73
Senna 49.71 28.38 35.61
Senna† 44.39 50.00 47.03

Relative Motion Direction

LLaVA 51.48 52.51 45.12
LLaVA† 57.90 61.84 57.40
Qwen-VL 54.56 57.29 44.16
Senna 0.00 0.00 0.00
Senna† 41.06 50.00 45.09

Speed Assessment

LLaVA 15.53 18.69 12.92
LLaVA† 38.76 28.94 27.41
Qwen-VL 16.29 22.39 15.86
Senna 0.00 0.00 0.00
Senna† 24.83 13.98 13.28

Traffic Element Recognition

LLaVA 53.81 54.56 46.07
LLaVA† 73.11 58.33 59.73
Qwen-VL 65.39 65.77 65.57
Senna 51.42 36.42 39.07
Senna† 40.34 50.00 44.66

Trajectory Analysis

LLaVA 44.56 43.67 43.63
LLaVA† 98.84 98.97 98.90
Qwen-VL 18.65 18.90 17.03
Senna 35.76 15.27 20.64
Senna† 92.92 95.26 93.81

and Table 4, respectively. Average F1 scores decrease substantially
from binary questions (66.1% ) to attribute questions (18.3%) and
motion questions (37.6%). This strongly validates our complexity
assumptions. This pattern reinforces our assumption that binary
decisions are the most accessible visual reasoning task, attribute
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Table 5: Single-frame vs two-frame input comparison on mo-
tion questions. Senna′′ compares single-frame finetuned Senna to
two-frame finetuned Senna. Despite finetuning on temporal data,
single-frame input consistently outperforms two-frame input. Bold
indicates best performance, underline indicates second-best.

Model Single Frame Two Frames
F1 (%) F1 (%) Improvement (%)

LLaVA 49.23 43.81 -5.42
LLaVA No Box 46.94 46.33 -0.61
Qwen-VL 52.88 50.14 -2.74
Senna 20.52 21.79 1.27
Senna′′ 56.56 44.40 -12.16

Table 6: Effectiveness of red bounding boxes at instance-
grounding. ✓and ✗refer to models run with and without bounding
boxes, respectively.

Box: ✗ Box: ✓Question Type Model F1 (%) F1 (%)

Color Recognition LLaVA 14.75 15.10
Qwen-VL 40.07 42.49

Fine-grained Classification LLaVA 7.64 6.36
Qwen-VL 18.65 18.81

Orientation LLaVA 13.17 14.49
Qwen-VL 19.74 21.34

reasoning demands fine-grained visual understanding and semantic
knowledge, and motion understanding requires temporal reasoning
capabilities that current VLMs lack. Importantly, the intermediate
performance on motion tasks (37.6%) compared to attributes (18.3%)
suggests that the models may rely on static visual cues rather than
true temporal understanding.
Senna’s Performance. Senna’s poor performance despite being
driving-specific reveals the brittleness of narrow task training. The
model was optimized for planning ( e.g., given some instructions,
respond "go straight") and scene description, making it unable to
adapt to structured Q&A. This highlights the importance of diverse
training tasks for robust VLMs. General models (LLaVA, Qwen-
VL) show better instruction following and adaptability. There is
a significant challenge in task transfer for VLMs in autonomous
driving. Development in autonomous driving implies designing
domain-specific models like Senna, however, due to a narrowed
task focus, these models can fail to transfer to other driving-domain
tasks. Models should be trained on diverse tasks within their domain
rather than just 1-2 specific task types.
Single vs Two Frames Analysis.We investigated whether consec-
utive frames improve motion understanding by comparing single
frame vs. two frame input (current + previous frame at 100-ms inter-
vals). Counterintuitively, consecutive frames consistently degrade
performance across all models, even when specifically finetuned
on temporal data (Senna′′ : 56.56% vs 44.40% F1 in Table 5). This
suggests that current VLMs struggle to effectively integrate short-
term temporal information for structured reasoning tasks, likely
due to training paradigms optimized for single images or longer
video sequences rather than frame pairs.
Box Grounding Effectiveness. Table 6 shows that box grounding
consistently improves Qwen-VL performance in all tasks (average
+1.39% F1), with the largest gains in color recognition (+2.42% F1).

Figure 4: Example of a path conflict detection question and
the outputs of pretrained and fine-tuned VLMs.

In contrast, LLaVA shows mixed results: improvements in color
recognition and orientation (+0.35% and +1.32% F1 respectively) but
degradation in fine-grained classification (-1.28% F1). We attribute
these differences to architectural design: Qwen-VL’s cross-attention
mechanism and larger ViT-G/14 encoder enable better separation
of visual grounding cues from box artifacts, while LLaVA’s simpler
MLP projection with ViT-L/14 struggles to filter box-induced noise.
These findings highlight that the effectiveness of visual grounding
critically depends on model architecture.
Case Study. Path conflict detection is a critical capability for au-
tonomous vehicles. Figure 4 illustrates pretrained and fine-tuned
VLM model responses to the given motion query. Despite the clear
visual evidence of a leading vehicle in the lane, only Qwen-VL
correctly identifies the conflict. LLaVA and its fine-tuned variant
fail to recognize the obstruction, responding incorrectly with “no.”
The domain-specific VLM Senna also fails to detect the vehicle
and instead generates an irrelevant scene-level caption focused
on weather and road conditions. This example highlights a key
limitation of current VLMs: even with fine-tuning, many models
struggle with localized, intent-driven queries requiring precise spa-
tial grounding.

5 Conclusion
We present the Box-QAymo dataset, to benchmark VLMs under
realistic constraints. Our evaluation revealed three critical failures:
format adherence, hierarchical performance degradation, and tem-
poral reasoning. These findings challenge current approaches, es-
pecially that domain-specific models perform significantly worse
on our benchmark. This highlights a critical gap in the demonstra-
tion of safety and trust in autonomous driving. When passengers
cannot reliably query what an autonomous vehicle perceives, the
fundamental promise of AI-enabled driving is not fulfilled. This
gap between current capabilities and deployment requirements sug-
gests that achieving trustworthy human-vehicle communication
will require rethinking our approach to VLM development, moving
beyond task optimization toward architectures that maintain robust
reasoning across diverse query types.
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